
Building and Using Actor Classes

LECTURE 3

OutcomesGoals

LECTURE GOALS AND OUTCOMES

The goals of this lecture are to

• Show how to add components to a Blueprint

• Introduce the Construction Script

• Present various types of events

• Demonstrate how to spawn, destroy, and reference

Actor instances

• Show how to do input mappings

By the end of this lecture you will be able to

• Add various types of components to a Blueprint

• Manage Actor instances

• Create collision and mouse events

• Create input events and map keys and axes

COMPONENTS

Components are ready-to-use classes that can be

used inside Blueprints. Several features can be

included in a Blueprint using only components.

To add components to a Blueprint, use the

Components panel in the Blueprint Editor.

The image on the right shows the Components panel

for a new Blueprint with some component options that

are displayed when the Add Component button is

pressed.

COMPONENTS:

VIEWPORT

The visual representation of the components can be

seen in the Viewport.

The image on the right shows the components that are

part of the ThirdPersonCharacter Blueprint from the

Third Person template. The components that have

“(Inherited)” next to the name were inherited from the

Character class.

• The CapsuleComponent is used for collision

testing.

• The Mesh component is the Skeletal Mesh that

visually represents the character.

• The FollowCamera component is the camera that

will be used to view the game.

• The CharacterMovement component contains

various properties that are used to define the

movement.

CONSTRUCTION SCRIPT

The Construction Script is a special function that all

Actor Blueprints perform when the Blueprint is first

added to the Level, when there is a change to its

properties, or when the class is spawned at runtime.

The Construction Script has a separate graph where the

actions to be performed can be placed.

It is important to note that the Construction Script won’t

run on placed Actors when the game starts.

CONSTRUCTION SCRIPT:

EXAMPLE

The Construction Script seen on the right uses the Set

Material function to define a Static Mesh component’s

Material type according to the Material selected in the

editable variable Material Type.

Whenever the Material Type variable is modified, the

Construction Script runs again, updating the object

with the new Material.

E V E N T S

BEGIN PLAY EVENT

Events allow communication between Unreal Engine

and Actors. A common example is the BeginPlay event.

The BeginPlay event is triggered when the game starts

for an Actor. If the Actor is spawned in the middle of the

game, then this event is triggered immediately.

TICK EVENT

There is an event named “Tick” that is called every

frame of the game. For example, in a game that is

running at 60 frames per second, the Tick event is

called 60 times in a second.

The Tick event has a parameter known as Delta

Seconds, which contains the amount of time that has

elapsed since the last frame.

In the Tick event illustrated on the right, an Actor moves

along the X axis at the speed of 100 centimeters per

second.

Use the Tick event only when necessary, as it can affect

performance.

COLLISION EVENTS

Collision events are triggered when two Actors collide

or overlap.

Event ActorBeginOverlap will execute when two

Actors start overlapping and the Generate Overlap

Events property of both Actors is set to “true”.

Event ActorEndOverlap will execute when two Actors

stop overlapping.

Event Hit will execute if the Simulation Generates Hit

Events property of one of the Actors in the collision is

set to “true”.

A C T O R I N S T A N C E S

SPAWNING ACTORS

Spawn Actor from Class is a function that creates an

Actor instance using the class and transform specified.

The Collision Handling Override input defines how to

handle the collision at the time of creation. The output

parameter Return Value is a reference to the newly

created instance.

In the example on the right, when the space bar is

pressed, an instance of the Blueprint Effect Explosion

class is created at the same location (transform) of the

current Blueprint.

DESTROYING ACTORS

The DestroyActor function removes an Actor instance

from the Level at runtime. The instance to be removed

must be specified in the Target parameter.

The image on the right shows a function named “Test

Health” that will check if the value of the Health

variable is less than zero. If “true”, the current instance

of this Blueprint, which is represented by “self”, will be

destroyed.

GET ALL ACTORS OF CLASS

Get All Actors Of Class is a function that gets the

references of all the Actors in the current Level who

belong to a specified class.

The Actor Class parameter specifies the class that will

be used in the search.

The Out Actors output parameter is an array containing

references to the Actor instances of the specified class

found in the Level.

In the image on the right, Get All Actors Of Class

returns an array of BP_Coin Actors, then uses a

ForEachLoop node to set the New Hidden property to

“true” in the Set Actor Hidden In Game function for

each Actor in the array.

This can be a costly operation. Do not use it in the Tick

event.

REFERENCING ACTORS

In a Blueprint, it is possible to create a variable that

references an Object / Actor.

The example on the right shows the creation of a

variable that references an instance of the

Blueprint_Chair class. An Object Reference points to

an Actor that is in the Level.

When created, the variable is empty. A way to set an

instance to this variable is to check the Instance

Editable property, add the Blueprint to the Level, and in

the Details panel select an Actor that is in the Level.

Another way is to use the return value of the Spawn

Actor from Class function.

P L AY E R I N P U T

INPUT MAPPINGS

It is possible to create new input events that represent

actions that make sense in the game.

For example, instead of creating an input event for the

left mouse button that will trigger a gun, it is better to

create an action event called “Fire” and map all keys

and buttons that can trigger this event.

To access the input mappings, in the Level Editor

menu, go to Edit > Project Settings... and in the

Engine category select the Input option.

ACTION MAPPINGS

Action mappings are for key and button presses and

releases.

The image on the right shows an example of action

mappings from the First Person template.

In this example, an action named “Jump” has been

created that can be triggered by the space bar, the

bottom face button of a gamepad, or the left trigger

of a motion controller.

AXIS MAPPINGS

Axis mappings allow for inputs that have a continuous

range, such as the movement of a mouse or the analog

sticks of a gamepad.

Keys and buttons can also be used in the axis mapping.

In the example on the right, the MoveRight action is

mapped to the “D” key, with the value of the Scale

property set to “1.0”, and to the “A” key, with the value

set to “–1.0”, which represents the reverse direction.

INPUT ACTION EVENTS

All action mappings are available in the Blueprint

Editor under Input > Action Events in the context

menu.

An InputAction event is generated when the keys or

buttons associated with it are pressed or released.

The bottom image on the right shows an example of an

InputAction event.

INPUT AXIS EVENTS

All axis mappings are available in the Blueprint Editor

under Input > Axis Events in the context menu.

An InputAxis event continuously reports the current

value of the axis.

The bottom image on the right shows an example of an

InputAxis event.

SUMMARY

This lecture presented components and

the Construction Script and showed how to

add various types of events to a Blueprint.

It also explained how to manage Actor

instances and how to do input mappings.

