
Basic Blueprint Programming Concepts

LECTURE 2

OutcomesGoals

LECTURE GOALS AND OUTCOMES

The goals of this lecture are to

• Demonstrate how to create variables and modify their

properties

• Show how to use arithmetic, relational, and logical

operators

• Present functions, custom events, macros, and their

differences

• Introduce program flow

By the end of this lecture you will be able to

• Create variables using the correct type for each

situation

• Create expressions using operators

• Understand when to use functions, custom events, or

macros

• Use some basic nodes that control the program flow

V A R I A B L E S

CREATING VARIABLES

Variables are used to store values and attributes in

Blueprints that can be modified during the execution of

the game. The variables can be of different types.

To create a variable, go to the My Blueprint panel in

the Blueprint Editor and click the “+” button in the

Variables category.

VARIABLE DATA TYPES

Following are common types of variables:

• Boolean: Can only hold the value “true” or “false”.

• Integer: Used to store integer values.

• Float: Used to store decimal values.

• String / Text: Used to store text. The Text variable is

preferable since it supports localization.

• Vector: Contains the float values X, Y, and Z.

• Transform: Used to store location, rotation, and

scale.

DETAILS PANEL

When a variable is selected, its properties are displayed

in the Details panel. This is where changes can be

made to the variable’s name and type.

Other properties found in the Details panel include the

following:

• Instance Editable: If checked, the variable can be

changed in the instances that are in the Level.

• Blueprint Read Only: If checked, the variable

cannot be changed by Blueprint nodes.

• Tooltip: Contains information shown when the cursor

hovers over the variable.

• Expose on Spawn: If checked, the variable can be

set when spawning the Blueprint.

ARRAY, SET, AND MAP

The Variable Type property includes a button that is

used to convert the variable into a container.

A container can store several elements of the same

type. Listed below are the types of containers available.

• Array: An ordered list of values that are accessed

using an index value.

• Set: An unordered collection of values. Duplicate

values are not allowed.

• Map: A list that uses a key-value pair to define each

entry. Duplicate key values are not allowed.

GETTERS AND SETTERS

When a variable is dragged and dropped into the Event

Graph, a context menu appears with the options Get

and Set.

Get nodes are used to read the value of the variable.

Set nodes are used to store a new value in the variable.

There are useful shortcuts to create Get and Set nodes.

To create a Get node, press the Ctrl key when dragging

and dropping a variable. The Set node is created using

the Alt key.

O P E R A T O R S

ARITHMETIC OPERATORS

The arithmetic operators (+, -, *, /) can be used to

create mathematical expressions in Blueprints.

The image on the right shows a simple expression that

adds a value of “50” to the current Score variable, then

sets the newly calculated value in the Score variable.

The “+” operator receives two input values on the left

and gives the operation result on the right. To use more

than two input values, just click on the Add pin option.

The input values can be entered directly into the nodes

or can be obtained from variables.

RELATIONAL OPERATORS

Relational operators perform a comparison between

two values and return a Boolean value (“true” or “false”)

as a result of the comparison.

The image on the right shows the relational operators

and an example using a Branch node. At the end of a

game, the current player’s score (Score variable) is

compared with the highest recorded game score (High

Score variable). If the player’s score is higher, the value

of the Score variable will be stored in the High Score

variable.

LOGICAL OPERATORS

Logical operators perform an operation between

Boolean values and return a Boolean value (“true” or

“false”) as a result of the operation. The main logical

operators are as follows:

• OR: Returns a value of “true” if any of the input

values are “true”.

• AND: Returns a value of “true” only if all input values

are “true”.

• NOT: Receives only one input value, and the result

will be the reverse value.

The example on the right simulates a simple decision of

an enemy in a game. If the enemy is low on ammo

(Low Ammunition variable) and the player is nearby

(Player Is Near variable), then the enemy decides to

run away.

F U N C T I O N S , E V E N T S , A N D
M A C R O S

FUNCTIONS

Functions allow a set of actions that are executed in

various parts of the Blueprint to be gathered in one

place for easy organization and maintenance of the

script.

Functions can be called from other Blueprints and allow

the use of input and output parameters.

To create functions, go to the My Blueprint panel in the

Blueprint Editor and click the “+” symbol in the

Functions category.

FUNCTIONS:

INPUTS AND OUTPUTS

Input parameters are values that can be passed into a

function.

Output parameters are values that can be returned

from a function.

To add input or output parameters, select the function in

the My Blueprint panel and use the Details panel.

The images on the right show a function with an input

parameter named “Value” that is added to the Score

variable.

The result of the sum is set in the Score variable, then

returned with the output parameter named “New

Score”.

FUNCTIONS:

LOCAL VARIABLES

Functions allow the use of local variables that are only

visible inside the function. They are very effective at

assisting in complex functions and do not mix with the

other variables of the Blueprint.

To create a local variable, double-click on a function to

edit it, then look at the My Blueprint panel. At the

bottom of the panel, you will find a category named

Local Variables with the name of the function in

parentheses. Click the “+” button in the Local Variables

category.

FUNCTIONS:

THE TARGET PARAMETER

The Target parameter is common to several functions

and indicates the object that will be modified with the

function call.

The default value for this parameter is “self”, which is a

special reference to the Actor or Object instance that

owns the script being executed.

The image on the right shows different ways to use the

Target parameter of the DestroyActor function.

CUSTOM EVENTS

Unreal Engine provides a number of predefined events,

but it is possible to create new ones to use in a

Blueprint. These events can be called from both the

Blueprint they are defined in and other Blueprints.

To create a custom event, right-click in the Event

Graph, expand the Add Event category, and select

“Add Custom Event...”.

CUSTOM EVENTS:

INPUT PARAMETERS

Selecting a Custom Event node allows you to manage

the event name and input parameters. Events do not

have output parameters.

The images on the right show a custom event named

“WelcomeMessage” with an input parameter called

“Name”.

The event will create and print on screen a custom

message using the name passed as a parameter.

CUSTOM EVENTS:

DELEGATES

An event has a small red square in the right corner that

is known as a delegate. This is just a reference to the

event. Some actions receive an event as a parameter,

and using the delegate makes that possible.

In the image on the right, the delegate of the custom

event named “Clock” is wired to the Set Timer by

Event node’s Event input pin, so the Clock event will

be called every second.

MACROS

Another way to gather actions in one common place is

to use macros. A macro is similar to a collapsed graph

of nodes. At compile time, the actions of a macro are

expanded in the places that the macro is being used.

Macros can have input and output parameters, as well

as several input and output execution pins.

MACROS

VS.

EVENTS

VS.

FUNCTIONS

Macros, custom events, and functions provide different ways to organize script. Each

of them has its advantages and limitations. One thing they have in common is that

they all have input parameters.

• Macros have output parameters and can have many execution paths. They

cannot be called from another Blueprint.

• Events do not have output parameters. They can be called from other Blueprints

and have the “delegate” reference. They support Timelines.

• Functions can be called from other Blueprints and have output parameters.

Functions do not support latent actions, such as the Delay action.

P R O G R A M F L O W

BRANCH NODE

The Branch node directs the flow of execution of a

Blueprint based on the value of the Boolean input

“Condition”, which can be “true” or “false”.

In the image on the right, there is a custom event that is

called at the end of the game. The Branch node is used

to test if the score is greater than “10000”. A different

message will be shown based on the result.

FOR LOOP NODE

The ForLoop node performs the set of actions that are

associated with the output pin Loop Body for each

index.

When the ForLoop node completes its execution, the

output pin Complete is triggered.

On the right, a ForLoop node is used to execute the

Print String node ten times. The value of the Index

output pin of the ForLoop node is used as the input for

the Print String node.

The conversion node is automatically created by the

Editor when an integer value is connected to a string

input.

SEQUENCE NODE

A Sequence node can be used to help organize other

Blueprint actions. When triggered, it executes all the

nodes connected to the output pins in sequential

order—that is, it executes all the actions of pin Then 0,

then all the actions of pin Then 1, and so on.

Output pins can be added using the Add pin + option.

To remove a pin, right-click on the pin and choose the

Remove execution pin option.

SUMMARY

This lecture showed how to create

variables and how to use operators to

create expressions.

Functions, custom events, and macros

were presented, and the lecture introduced

some basic nodes that control the program

flow.

